产品列表
 
 
     
 
捷丰首页 > 资讯中心 > 全部内容 资讯中心

锅炉风机噪声的危害及其防治对策

2010-8-26 9:39:20
 【关键词】风机,噪声,危害,防治 
  【论文摘要】锅炉风机噪声点源多,分贝高,是引发环境信访的重要因素。本文从锅炉风机噪声的防治出发,论述了风机噪声的危害及降噪节能综合治理技术。 
  目前在很多企业,受工业生产和供暖需求,锅炉的安装、使用非常普及。但很多锅炉由于存在选址欠佳和风机性能不良等因素,锅炉噪声影响周围居民安静的工作、生活环境,损害人民身体健康,常常引发扰民事件,产生纠纷。经统计,2004年我区因噪声引发的信访案件占环境信访案件的30%。因此,锅炉风机噪声治理日益重要。 
  1、 环境噪声污染的危害 
  噪声对人体的影响和危害一般可分为劳动保护和环境保护两方面,前面指危害人的身体健康,导致各种疾病的发生,后者指干扰环境安静,影响人们正常的工作和生活。噪声对人体健康危害主要表现在:损伤听力,造成噪声性耳聋;导致大脑皮层兴奋和平衡失调,脑血管功能损害,导致神经衰弱;损伤心血管系统,引发消化系统失调,影响内分泌;干扰人们正常的生活、休息、语言交谈和日常的工作学习,分散注意力,降低工作效率。 
  2、 噪声治理的基本原理 
  形成噪声污染主要是三个因素,即:声源、传播媒介和接收体。只有这三者同时存在,才能对听者形成干扰。从这三方面入手,通过降低声源、限制噪声传播、阻断噪声的接收等手段,来达到控制噪声的目的,在具体的噪声控制技术上,可采用吸声、隔声和消声三种措施。 
  2.1吸声 
  当声波入射到物体表面时,部分声能要被物体吸收转化为其他形式的能量,称为吸声。材料的吸声性能用吸收系数来表示,吸声系数越大,则表示材料的吸声性能越好。材料的吸声性能与材料的性质、结构和声波的入射角度及声波的频率有关。多孔吸声材料的吸声机理是:材料内部有无数细小的相互贯通的孔洞,当声波入射到这些材料的表面,进而入射到这些细小的孔隙内时,要引起孔隙内的空气运动,紧靠孔壁和纤维表面的空气,因摩擦和粘滞运动阻力而不易运动,使声能转化为热能而消耗掉。故性能良好的吸声材料要多孔,孔与孔之间互相贯通,并且贯通的孔洞要与外界连通,使声波能进入材料内部。
如对应1000赫兹声波,10cm厚的超细玻璃棉的吸声系数是0.87。 
    2.2隔声 
    隔声所采用的方法是将噪声源封闭起来,使噪声控制在一个小的空间内,这种隔声结构称为隔声罩。在声波遇到屏蔽物时,由于界面特性阻抗的改变,入射声能的一部分被反射,一部分被吸收,一部分声能透进屏蔽物继续传播。材料的隔声性能可用透声系数来表示。透声系数越小,表示透进去的声能越少,材料的隔声性能越好。材料的隔声性能与隔声体的结构、性质和入射声波的频率有关。 
    2.3消声 
    消声是将多孔吸声材料固定在气流通道内壁,或按一定方式固定在管道中,以达到削弱空气动力性噪声的目的,消声量一般可达到10—50分贝。 
    3、 风机噪声治理技术 
    锅炉房的鼓风机和引风机噪声一般在90分贝左右,因输送的锅炉烟气温度高达180℃,采用封闭隔声会导致散热不良,电机温度过高,甚至烧毁电机。因此,在工艺上将风机降噪和节能两方面结合起来。经实践,锅炉风机节能降噪综合治理方案为:对锅炉房的工艺布置保持不变,将鼓风机、引风机分别置在隔声室内,用通风管将它们与主机相连接,在隔声室顶上或墙面上开设进气口,并安装消声器供机房进风使用。平面布置时将鼓风机靠近锅炉房一侧,进风口在上风侧,电机置于气流通道中间。锅炉运行时,由于鼓风机在隔声室内产生负压,大量的室外新鲜空气就会自动进入隔声室,首先和引风机电机进行热交换,使之冷却降温,室内温度保持50℃左右。
该方案中由于隔声室和进风消声器的降噪能力都比较大,降噪的效果容易实现。鼓风机将预热的空气送入锅炉燃烧,回收利用能源,具有一定的经济效益。 
    为保证治理效果和锅炉设备正常运行,在设计施工中,应根据具体要求,考虑噪声的声强、声频等因素,对隔声、吸声和通风散热进行详细设计,做好细部处理。对隔声室的大小厚度,吸声材料的种类、厚度进行计算。进风消声器的消声量一般选用25dB(A)左右。尽量减少噪声辐射面积,去掉不必要的金属板面。控制板面的振动,在声源与隔声罩及基础之间用软性材料连接。鼓风机的连接管道和薄壁钢板烟囱是噪声治理的薄弱环节,在管壁外包扎5cm厚的玻璃纤维棉,用钢丝扎紧后,再用2cm厚的钢丝网水泥粉刷。将玻璃纤维棉固定在钢板上,吸收隔声室内的混响噪声。 
    4、 降噪和节能效果 
    4.1降噪效果 
    如果风机噪声是90分贝,采用3mm钢板的隔声罩,其理论隔声量是32分贝。隔声罩内衬10cm厚的玻璃棉,其吸声系数是0.87,在进气管安装消声器,则实际隔声量为 
    TL=32+10 log20.87=30分贝 
    故风机噪声治理后达到:T=90-30=60分贝 
    声压级和声强是反映声音的客观物理量,人体对噪声的主观感受用响度表示:N=2(N-40)/10(宋) 
    治理前的风机响度为:N1=2(90-40)/10=32(宋) 
    治理前的风机响度为:N2=2(60-40)/10=4(宋) 
    故治理前后响度降低87.5% 
   节能效果 
   机房内设备的散热主要有三个方面:①引风机与管道壁面的对流散热,②引风机与管道壁面的辐射散热,③风机电机的散热。
该方案中由于隔声室和进风消声器的降噪能力都比较大,降噪的效果容易实现。鼓风机将预热的空气送入锅炉燃烧,回收利用能源,具有一定的经济效益。 
    为保证治理效果和锅炉设备正常运行,在设计施工中,应根据具体要求,考虑噪声的声强、声频等因素,对隔声、吸声和通风散热进行详细设计,做好细部处理。对隔声室的大小厚度,吸声材料的种类、厚度进行计算。进风消声器的消声量一般选用25dB(A)左右。尽量减少噪声辐射面积,去掉不必要的金属板面。控制板面的振动,在声源与隔声罩及基础之间用软性材料连接。鼓风机的连接管道和薄壁钢板烟囱是噪声治理的薄弱环节,在管壁外包扎5cm厚的玻璃纤维棉,用钢丝扎紧后,再用2cm厚的钢丝网水泥粉刷。将玻璃纤维棉固定在钢板上,吸收隔声室内的混响噪声。 
根据通风工程原理,节能降噪系统还可以回收部分热量。经过实践,采用锅炉风机噪声节能降噪治理技术,既降低了噪声污染,保障了人民群众的生活环境,又回收利用了能源,达到了经济、环境效益的统一。
阅读全文

浅谈防火阀、排烟阀在空调系统的工程质量

2010-8-9 10:12:12
1、防火阀、排烟阀的主要用途

    高层及其它各类现代建筑大都设有通风、空调及防排烟系统,一旦发生火灾,这些系统中的管道将成为火焰、烟气蔓延的通道。为了阻止火势通过风管蔓延扩大,在《建筑设计防火规范》GBJ16-87和《高层民用建筑设计防火规范》GB50045-95中均明确规定了防火阀、排烟
阀的设置要求。

    防火阀用在通风、空调系统的送、回风管路上,平时呈开启状态,当火灾一旦发生,管道内气体温度达到70℃时即自行关闭,并在一定时间内能满足耐火稳定性和耐火完整性要求,起隔烟阻火作用。排烟阀用在排烟系统管道上或排烟风机的吸入口处,平时呈关闭状态,当火灾发生时,通过火灾报警信号手动或自动开启阀门,根据系统功能配合排烟,当管道内烟气温度达到280℃时自动关闭,并能在一定时间内满足耐火稳定性和耐火完整性要求,起隔烟阻火作用。

    2、防火阀、排烟阀在通风、空调和防排烟系统中的重要作用

    防火阀包括重力式防火阀、防火调节阀、防火风口、气动防火阀、防烟防火阀、电子自控防烟防火阀等多种产品;排烟阀包括排烟防火阀、板式排烟口(顶棚用)、竖井用排烟口等产品。防火阀、排烟阀是通风、空调和防排烟系统中重要的组件,在系统中发挥的重要作用主要有以下三方面:

    2.1、隔烟阻火作用

    在送风系统中,送风机送出的风必须通过主干管分配到支管中;在排烟系统中,烟气由支管到主干管后,进入排烟风机排出。当建筑物内发生火灾时,在通风、空调系统中,为了防止火势通过送风系统蔓延,当送风系统中气体温度达到70℃时,防火阀机构上熔断器动作,阀门亦迅速关阀,切断烟气与火势沿风管蔓延的通路。同样,在排烟系统中,发生火灾时,排烟阀开启,进行排烟,为了截断高温烟气在排烟管路中流动,防止火势蔓延到另一防火分区,当排出的烟气温度达到280℃时,排烟防火阀、排烟口上熔断器动作,阀门必须自动关闭,阻止排烟。由此可见,防火阀、排烟阀做到了该通则通,该断则断的隔烟阻火作用。

    2.2、调节作用

    在通风、空调系统管路设计中,虽经计算,但在实际工程的运行工况如果有变,则需要通过防火阀阀门对系统各部分的风量进行调节,进行系统调试,将阀门的开度固定下来,合理分配,以满足设计要求。

    2.3、启动空载作用

    通风空调和排烟系统中所有离心风机和消防专用排烟轴流风机,在安装调试时,为了安全起见,使电机的启动电流最小,一般是空载启动,通过阀门临时截断管路来实现。

    3、工程应用中质量要求

    3.1、产品质量要求

    目前防火、排烟系列产品生产厂家不少,我们消防监督、建审部门和设计部门应严格把关, 让甲方选用“三证”齐全、合格的产品,即要有生产厂家的出厂合格证、公安消防机关的产品销售许可证、国家防火建筑材料质量监督检验中心的产品检验报告。从国家级检验报告和产品技术参数中可反映出产品性能和质量,其依据是国标《防火阀试验方法》GB15930-1995和《排烟防火阀试验方法》GB15931-1995。其产品质量要求体现为5个方面:

    3.1.1、温感器动作性能试验

    对防火阀、排烟阀的感温元件,分别经恒温水浴、油浴的规定温度,通过不动作与动作试验,检验其是否能按要求的温度准确地关闭。

    3.1.2、关闭可靠性试验

    在试验台上关闭操作250次,试件应能从开启位置灵活可靠地关闭,各零部件应无明显磨损、变形以及影响其密封性能的损伤。以此来检验关闭的可靠性。

    3.1.3、盐雾试验

    将试件在盐雾箱进行喷盐雾试验,试件应能从开启位置可靠地关闭,以此检验阀门在实际工程中的抗腐蚀能力。

    3.1.4、漏风量试验

    阀体前后在规定的压差条件下,试件单位面积的漏风量不大于700Nm3/(h·m2),以此来检验阀门关闭后的密闭性能。

    3.1.5、耐火试验

    通过耐火试验,根据在规定时间内的关闭能力和单位面积的漏风量两项指标,判定阀门的耐火能力。

    另外从产品的技术参数要求其耐火极限为3h。

    3.2、安装质量要求

    在日常防火检查和工程验收工作中,笔者发现因安装施工质量问题造成防火排烟阀开启不灵或有故障,排烟阀、排烟口、防火阀、防火风口复位困难等。这应引起施工方的重视,注意以下几点安装要求。

    3.2.1、防火阀、排烟阀应严格按图施工,单独设支吊架,以避免风管在高温下变形,影响阀门功能。

    3.2.2、阀门在吊顶上或在风道内安装时,应在吊顶板上或风道壁上设检修入孔,一般入孔尺寸不小于450×450mm,在条件限制时,吊顶检修孔也可减小至300×300mm。

    3.2.3、防火阀与防火墙(或楼板)之间的风管应采用δ≥1.5mm的钢板制作,最好再在风管管外用耐火材料保温隔热或不燃性材料保护,以保证防火墙的耐火性能。

    3.2.4、在阀门的操作机械一侧应有350mm的净空间,以利于检修。

    4、防火、排烟阀在工程中存在的一些问题

    本人在日常防火建审、工程检查和验收工作中,发现防火、排烟阀存在的一些问题有如下几点,供同行参考。

    4.1、消防控制室的送、回风管在其穿墙处未设防火阀。

    在建审过程中,发现有些工程设计图上消控室的送、回风管在其穿墙处无防火阀,这与《火灾自动报警系统设计规范》GB50116-98中第6.2.2条不符。设防火阀的目的是为了保证消防控室的防火安全。

    4.2、消防控制设备对防烟、排烟设施的控制、显示功能不完善

    根据规范GB50116-98中第6.3.9条的规定:火灾报警确认后,必须停止有关部位的空调送风,关闭电动防火阀,并接收其反馈信号;同时启动有关部位的防烟和排烟风机、排烟阀等,并接收其反馈信号。有的工程联动控制中不能分区控制排烟阀、排烟口,有的不能接收其反馈信号,不能反映出阀件的启闭状况。

    4.3、管网气体灭火系统无气动防火阀。

    GB50116-98中第6.3.4.3条要求:“在延时阶段,应自动关闭防火门、窗,停止通风空调系统,关闭有关部位防火阀。”这要求在管网气体灭火系统中,必须安装气动防火阀,与消防控制设备联动。在个别工程中无此功能。

    4.4、送风与排烟合用风道时无远程控制

    有些建筑地下室、停车场采用送风与排烟合用风道时,我们发现送风机和排烟机前的截止阀只能现场手动,不能实现控制室的远程控制,平时,送风机工作,其前端的截止阀呈开启状况,一旦发生火灾时,需人到现场去关闭风机前的截止阀,这很不实际,直接影响排烟系统。因此,建议其截止阀增加远程控制功能。

    5、系统联动调试及维护管理。

    防火阀、排烟阀在实际工程中不是独立的防烟阻火产品,而是在整个消防联动控制系统中有其独特的联动逻辑关系。因此,为了保证其在消防系统中发挥作用,在系统验收前,按联动要求,必须全面进行调试,使通风、空调及防排烟系统达到规范要求。验收后应有专人进行有计划的日常维护管理,以保障阀体处于正常的状况,在防烟阻火作用中发挥其功能。

阅读全文

风机运行中常见故障原因分析及其处理

2010-8-9 10:11:45
风机是一种将原动机的机械能转换为输送气体、给予气体能量的机械,它是火电厂中不可少的机械设备,主要有送风机、引风机、一次风机、密封风机和排粉机等,消耗电能约占发电厂发电量的1.5%~3.0%。在火电厂的实际运行中,风机,特别是引风机由于运行条件较恶劣,故障率较高,据有关统计资料,引风机平均每年发生故障为2次,送风机平均每年发生故障为0.4次,从而导致机组非计划停运或减负荷运行。因此,迅速判断风机运行中故障产生的原因,采取得力措施解决是发电厂连续安全运行的保障。虽然风机的故障类型繁多,原因也很复杂,但根据调查电厂实际运行中风机故障较多的是:轴承振动、轴承温度高、动叶卡涩、保护装置误动。   
1 风机轴承振动超标  
  风机轴承振动是运行中常见的故障,风机的振动会引起轴承和叶片损坏、螺栓松动、机壳和风道损坏等故障,严重危及风机的安全运行。风机轴承振动超标的原因较多,如能针对不同的现象分析原因采取恰当的处理办法,往往能起到事半功倍的效果。  
1.1 不停炉处理叶片非工作面积灰引起风机振动  
  这类缺陷常见于锅炉引风机,现象主要表现为风机在运行中振动突然上升。这是因为当气体进入叶轮时,与旋转的叶片工作面存在一定的角度,根据流体力学原理,气体在叶片的非工作面一定有旋涡产生,于是气体中的灰粒由于旋涡作用会慢慢地沉积在非工作面上。机翼型的叶片最易积灰。当积灰达到一定的重量时由于叶轮旋转离心力的作用将一部分大块的积灰甩出叶轮。由于各叶片上的积灰不可能完全均匀一致,聚集或可甩走的灰块时间不一定同步,结果因为叶片的积灰不均匀导致叶轮质量分布不平衡,从而使风机振动增大。  
  在这种情况下,通常只需把叶片上的积灰铲除,叶轮又将重新达到平衡,从而减少风机的振动。在实际工作中,通常的处理方法是临时停炉后打开风机机壳的人孔门,检修人员进入机壳内清除叶轮上的积灰。这样不仅环境恶劣,存在不安全因素,而且造成机组的非计划停运,检修时间长,劳动强度大。经过研究,提出了一个经实际证明行之有效的处理方法。在机壳喉舌处(A点,径向对着叶轮)加装一排喷嘴(4~5个),将喷嘴调成不同角度。喷嘴与冲灰水泵相连,将冲灰水作为冲洗积灰的动力介质,降低负荷后停单侧风机,在停风机的瞬间迅速打开阀门,利用叶轮的惯性作用喷洗叶片上的非工作面,打开在机壳底部加装的阀门将冲灰水排走。这样就实现了不停炉而处理风机振动的目的。用冲灰水作清灰的介质,和用蒸汽和压缩空气相比,具有对喷嘴结构要求低、清灰范围大、效果好、对叶片磨损小等优点。  
1.2 不停炉处理叶片磨损引起的振动  
  磨损是风机中最常见的现象,风机在运行中振动缓慢上升,一般是由于叶片磨损,平衡破坏后造成的。此时处理风机振动的问题一般是在停炉后做动平衡。根据风机的特点,经过多次实践,总结了以下可在不停炉的情况下对风机进行动平衡试验工作。  
  1)在机壳喉舌径向对着叶轮处加装一个手孔门,因为此处离叶轮外圆边缘距离最近,只有200 mm多,人站在风机外面,用手可以进行内部操  作。风机正常运行的情况下手孔门关闭。  
  2)振动发生后将风机停下(单侧停风机),将手孔门打开,在机壳外对叶轮进行试加重量。  
  3)找完平衡后,计算应加的重量和位置,对叶轮进行焊接工作。  
在实际工作中,用三点法找动平衡较为简单方便。试加重量的计算公式为  
    P<=250×A0×G/D(3000/n)2(g)  
  为了尽快找到应加的重量和位置,应根据平时的数据多总结经验。根据经验,Y4-73-11-22D的风机振动0.10 mm时不平衡重量为2 000 g;M5-29-11-18D的排粉机振动0.10 mm时不平衡重量120 g;轴流ASN2125/1250型引风机振动为0.10 mm时不平衡重量只有80 g左右。为了达到不停炉处理叶片磨损引起的振动问题的目的,平时须加强对风门挡板的维护,减少风门挡板的漏风,在单侧风机停运时能防止热风从停运的送风机处漏出以维持良好的工作环境。
阅读全文

轴流风机和引风机的区别

2010-8-9 10:11:17
一般常用风机的种类有轴流风机与离心风机。最常见的轴流风机就是家用电扇和空调外机风扇;离心风机就是吸油烟机和柜式空调内机里的风机。从功能上说可以分引风和鼓风,用哪种类型的风机都可以实现。
阅读全文

风机设计、选型与技术分析

2010-8-9 10:10:17
风机概述:风机是各个工厂、企业普遍使用的设备之一,特别是风机的应用更为广泛。锅炉鼓风、消烟除尘、通风冷却都离不开风机,在电站、矿井、化工以及环保工程,风机更是不可缺少的重要设备,正确掌握风机的设计,对保证风机的正常经济运行是很重要的。   离心风机设计方案的选择   离心风机设计时通常给定的条件有:容积流量、全压、工作介质及其密度(或工作介质温度),有时还有结构上的要求和特殊要求等。    对离心风机设计的要求大都是:满足所需流量和压力的工况点应在最高效率点附近;最高效率值要尽量大一些,效率曲线平坦;压力曲线的稳定工作区间要宽;风机结构简单,工艺性好;材料及附件选择方便;有足够的强度、刚度,工作安全可靠;运转稳定,噪声低;调节性能好,工作适应性强;风机尺寸尽可能小,重量轻;操作和维护方便,拆装运输简单易行。    然而,同时满足上述全部要求,一般是不可能的。在气动性能与结构(强度、工艺)之间往往也有矛盾,通常要抓住主要矛盾协调解决。这就需要设计者选择合理的设计方案,以解决主要矛盾。例如:    随着风机的用途不同,要求也不一样,如公共建筑所用的风机一般用来作通风换气用,一般最重要的要求就是低噪声,多翼式离心风机具有这一特点;而要求大流量的离心风机通常为双吸气型式;对一些高压离心风机,比转速低,其泄漏损失的相对比例一般较大。离心风机设计时几个重要方案的选择:     (1)叶片型式的合理选择:常见风机在一定转速下,后向叶轮的压力系数中Ψt较小,则叶轮直径较大,而其效率较高;对前向叶轮则相反。    (2)风机传动方式的选择:如传动方式为A、D、F三种,则风机转速与电动机转速相同;而B、C、E三种均为变速,设计时可灵活选择风机转速。一般对小型风机广泛采用与电动机直联的传动A,,对大型风机,有时皮带传动不适,多以传动方式D、F传动。对高温、多尘条件下,传动方式还要考虑电动机、轴承的防护和冷却问题。     (3)蜗壳外形尺寸的选择:蜗壳外形尺寸应尽可能小。对高比转数风机,可采用缩短的蜗形,对低比转数风机一般选用标准蜗形。有时为了缩小蜗壳尺寸,可选用蜗壳出口速度大于风机进口速度方案,此时采用出口扩压器以提高其静压值。     (4)叶片出口角的选定:叶片出口角是设计时首先要选定的主要几何参数之一。为了便于应用,我们把叶片分类为:强后弯叶片(水泵型)、后弯圆弧叶片、后弯直叶片、后弯机翼形叶片;径向出口叶片、径向直叶片;前弯叶片、强前弯叶片(多翼叶)。表1列出了离心风机中这些叶片型式的叶片的出口角的大致范围。     (5)叶片数的选择:在离心风机中,增加叶轮的叶片数则可提高叶轮的理论压力,因为它可以减少相对涡流的影响(即增加K值)。但是,叶片数目的增加,将增加叶轮通道的摩擦损失,这种损失将降低风机的实际压力而且增加能耗。因此,对每一种叶轮,存在着一个最佳叶片数目。具体确定多少叶片数,有时需根据设计者的经验而定。根据我国目前应用情况,在表2推荐了叶片数的选择范围。     (6)全压系数Ψt的选定:设计离心风机时,实际压力总是预先给定的。这时需要选择全压系数Ψt,全压系数的大致选择范围可参考表3。     (7)离心叶轮进出口的主要几何尺寸的确定:叶轮是风机传递给气体能量的唯一元件,故其设计对风机影响甚大;能否正确确定叶轮的主要结构,对风机的性能参数起着关键作用。它包含了离心风机设计的关键技术--叶片的设计。而叶片的设计最关键的环节就是如何确定叶片出口角β2A。关键技术的设计分析     在设计离心风机时,关键就是掌握好叶轮叶片出口角β2A的确定。     根据叶片出口角β2A的不同,可将叶片分成三种型式即后弯叶片(β2A<90℃),径向出口叶片(β2A=90℃)和前弯叶片(β2A>90℃)。     三种叶片型式的叶轮,目前均在风机设计中应用。前弯叶片叶轮的特点是尺寸重量小,价格便宜,而后弯叶片叶轮可提高效率,节约能源,故在现代生产的风机中,特别是功率大的大型风机多数用后弯叶片。     现代前弯叶片风机效率,比老式产品已有显著提高,故在小流量高压力的场合或低压大流量场合中仍广为采用。     径向出口叶片在我国已不常用,在某些要求耐磨和耐腐蚀的风机中,常用径向出口直叶片。     离心风机叶轮设计时还必须考虑到比转速与叶片型式存在一定的关系,故在确定叶片出口角的同时,必须综合考虑三种叶片型式对压力、径向尺寸和效率的影响。     正确确定了离心风机叶轮叶片出口角β2A将为叶轮其它主要几何尺寸的确定奠定了坚实的基础,从而对整台离心风机的性能起着关键的作用。
阅读全文

 

 
   第 27 页      共 27187  转到:第
 

 
网站首页 | 关于我们 | 产品中心 | 资讯中心 | 资质证书 | 服务承诺 | 风机技术 | 产品应用 | 联系方式
Copyright @ 2012 www.zjjffj.com   浙江捷丰暖通设备有限公司  浙ICP备12042463号-1  技术支持:大成网络   

浙公网安备 33060402000335号


主营:混流风机,排烟风机,屋顶风机,风机箱,诱导风机,边墙风机